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LET’S LOOK AT THE USERS- 
WHAT DOES A USER WANT/
NEED? 
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How Do I Represent and Manage My Data? 
Not How File System Works and How do I 

manage millions of files 
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How Do I discover Knowledge from Complex Data 
Sets? Not How do I Optimize Reading Millions of 

Files and from millions of processors? 

(a ) Mesh Refinement

(c ) Combined Mesh

Level 2

Level 1

Level 0

(b) Grid Hierarchy

(a) Mesh Refinement

(c ) Combined Mesh

Level 2

Level 1

Level 0

(b) Grid Hierarchy



Department of Electrical Engineering and Computer Science 

5 

How Do I perform queries in a manner 
which relates to my application? 

Time!

Variables!



Department of Electrical Engineering and Computer Science 

@ANC 

User specifies how 

streaming/ 

Small/large 

configuration 

s/w layer 

Regular/irregular 

Local/remote 

What Does a User Get? 
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Complexity 
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FS DM Datasets HSS 

Goal 
Decouple “What” from “How” 
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•  Is there a way to specify high-level 
information?  

•  Proactive  
•  Performance 
•  Portability 
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I/O Software Stack for 
Scientific Computing 
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•  Storage data models developed in the 1990s; 
Network Common Data Format (netCDF) and 
Hierarchical Data Format (HDF) 

•  Multidimensional array based data models 
•  A portable, self-describing on-disk file format 
•  HDF5 

•  Supports regular grid based data models 

High Level I/O Library 
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Parallel netCDF 
•  A parallel I/O library based on original netCDF 
•  Data Model: 

•  Collection of variables in single file  
•  Typed, multidimensional array variables  
•  Attributes on file and variables 

•  Features:  
•  Portable data format 
•  Noncontiguous I/O in memory using MPI datatypes 
•  Noncontiguous I/O in file using sub-arrays  
•  Collective I/O 
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Example: Lower Triangular 
Matrix Damsel: A Data Model Storage Library for Exascale Science

Figure 2: Traditional I/O software stack.
Proposed work has impact on high-level
I/O libraries and I/O middleware.

Figure 3: One way in which storage models do not match perfectly
with application abstractions. Layout for a simple lower triangular ma-
trix results in wasted space and possibly lower performance (either
more seeks or larger I/O requests) when reading.

2.1 Today’s I/O Software Stack

I/O systems on modern HPC hardware is actually a stack of components, consisting of disk and network
hardware, high-level I/O libraries, and I/O middleware that link the two. A depiction of this I/O stack is
shown in Figure 2. At the bottom of this stack is the storage layer, appearing as a parallel file system
connected to disk and network hardware. I/O middleware, such as an MPI-IO implementation [17], sits on
top of the parallel file system and handles communication between parallel compute nodes and I/O nodes,
including management of both concurrency and locality of accessing data.

I/O middleware and lower layers are designed to maximize I/O throughput, primarily as a linear stream of
bytes. Computational science codes, in contrast, understand the semantics of those bytes, as grids, fields
on the grids, and metadata annotations to both. High level I/O libraries are designed to translate between
the semantic and storage representations. HDF5 and PnetCDF are the two most popular options in HPC,
supporting the management and organization of semantic information, as well as the mechanics of I/O
storage operations. Currently, these high-level I/O libraries present a data model based on multi-dimensional
arrays of typed elements, with annotations for timestamps, runtime parameters, or other provenance. In
addition to multi-dimensional arrays and attributes, the libraries also define a portable, self-describing on-
disk file format, making it easier to exchange data with colleagues.

However, even a fairly simple example of solution data on a structured grid can map to I/O libraries in
less than ideal ways. Figure 3 illustrates the mapping from a conceptually straightforward lower triangular
matrix to several storage layouts. The netCDF layout, based on fixed-dimensional arrays, results in an array
that wastes just under half its allocated space. HDF5 supports multi-dimensional arrays and chunk-based
allocators, which alleviate this problem somewhat. However, the application must specify the chunk size,
and coordinate matching the matrix structures to those chunks. This can add development complexity, and is
even more difficult for unstructured data types. A better approach would take advantage of the data model’s
semantic information and avoid allocating space that will not be used.

2.2 Data Models and Layouts

A data model describes how simulation data is represented and accessed. For discretization-based solutions
of PDEs, the data model includes a description of the discretized domain (space and time, and sometimes
other dimensions like energy), and field data computed by the simulation over those discretizations. The
data model is a key part of HPC codes and strongly influences the efficiency of both computation and
communication. At their core, scientific codes usually store the model as multi-dimensional arrays, since

5
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Some Observations 

•  I/O library interfaces still based on low-level 
vectors of variables 

•  Lack of support for sophisticated data 
models, e.g. AMR, unstructured Grids, 
Geodesic grid, etc 

•  Gap between application data model and I/O 
library data model 

•  Require too much work at application level to 
achieve close to peak I/O performance 
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DAMSEL Goals 
•  Provide higher-level data model API to 

describe more sophisticated data models 
•  Enable exascale computational science 

applications to interact conveniently and 
efficiently with storage through the data 
model API 

•  Develop a data model storage library to 
support these data models, provide efficient 
storage data layouts 
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DAMSEL – A Data Model Storage Library 
•  A set of data models I/O APIs relevant to computational science 

applications  
•  A data layout component that maps these data models onto storage 

efficiently 
•  A rich metadata representation and management layer to handle both 

internal metadata and that generated by users and external tools 
•  I/O optimizations: adaptive collective I/O, request aggregation, and 

virtual filing 
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DAMSEL for FLASH 
•  Goal: to describe hierarchical/structural and 

solution information through API  
•  Entity 

•  FLASH cell as rectangle entity in DAMSEL 
•  FLASH Block as Cartesian Mesh entity in DAMSEL 

•  Entity Sets 
•  FLASH blocks assigned to entity sets to define hierarchical/

structural information 

•  Tags 
•  Only for solution data 
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1) High-Level User 
Centric View, Purpose 
Driven 

2) Online/In-situ 
Transformations, 
analytics 

3) Active Storage, 
Analytics, 
Reorganization 

Next Generation I/O - Three Ideas: 

Accelerate Knowledge 
Discovery 
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Summary 
•  Think Processor Evolution when thinking I/O 

•  Desktop, laptop, Mainframe, embedded, mobile, graphics, 
games,  etc etc… Designed to solve a problem 

•  Think application and user model and needs 
and not how to make things work with file 
system 

•  Working in user’s language will accelerate 
knowledge discovery – and they will come 

•  Ultimately, the purpose of I/O should drive 
architecture at all levels 


